
So�ware Heritage
Preserving the Free So�ware Commons

Nicolas Dandrimont

So�ware Engineer - So�ware Heritage
nicolas@dandrimont.eu

13 february 2018
Demandez le Programme! - Inria Saclay

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 1 / 28

mailto:nicolas@dandrimont.eu

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Gory details

5 Come in, we’re open!

6 Conclusion

7 FAQ B_appendix

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 2 / 28

So�ware source code is special

Harold Abelson, Structure and Interpretation of Computer Programs

“Programs must be wri�en for people to read, and only incidentally for machines to execute.”

�ake 2 source code (excerpt) Net. queue in Linux (excerpt)

Len Shustek, Computer History Museum

“Source code provides a view into the mind of the designer.”

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 2 / 28

Our So�ware Commons

Definition (Commons)

The commons is the cultural and natural resources accessible to all members of a
society, including natural materials such as air, water, and a habitable earth. These
resources are held in common, not owned privately. https://en.wikipedia.org/wiki/Commons

Definition (So�ware Commons)

The so�ware commons consists of all computer so�ware which is available at li�le or no
cost and which can be altered and reused with few restrictions. Thus all open source
so�ware and all free so�ware are part of the [so�ware] commons. [. . .]
https://en.wikipedia.org/wiki/Software_Commons

Source code is a precious part of our commons

are we taking care of it?

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 3 / 28

https://en.wikipedia.org/wiki/Commons
https://en.wikipedia.org/wiki/Software_Commons

Our So�ware Commons

Definition (Commons)

The commons is the cultural and natural resources accessible to all members of a
society, including natural materials such as air, water, and a habitable earth. These
resources are held in common, not owned privately. https://en.wikipedia.org/wiki/Commons

Definition (So�ware Commons)

The so�ware commons consists of all computer so�ware which is available at li�le or no
cost and which can be altered and reused with few restrictions. Thus all open source
so�ware and all free so�ware are part of the [so�ware] commons. [. . .]
https://en.wikipedia.org/wiki/Software_Commons

Source code is a precious part of our commons

are we taking care of it?

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 3 / 28

https://en.wikipedia.org/wiki/Commons
https://en.wikipedia.org/wiki/Software_Commons

So�ware is fragile

Like all digital information, FOSS is fragile

inconsiderate and/or malicious code loss (e.g., Code Spaces)

business-driven code loss (e.g., Gitorious, Google Code)

for obsolete code: physical media decay (data rot)

Where is the archive. . .
where we go if (a repository on) GitHub or GitLab.com goes away?

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 4 / 28

So�ware is fragile

Like all digital information, FOSS is fragile

inconsiderate and/or malicious code loss (e.g., Code Spaces)

business-driven code loss (e.g., Gitorious, Google Code)

for obsolete code: physical media decay (data rot)

Where is the archive. . .
where we go if (a repository on) GitHub or GitLab.com goes away?

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 4 / 28

So�ware lacks its own research infrastructure

A wealth of so�ware research on crucial issues. . .
safety, security, test, verification, proof

so�ware engineering, so�ware evolution

big data, machine learning, empirical studies

If you study the stars, you go to Atacama. . .

. . . where is the very large telescope of source code?

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 5 / 28

So�ware lacks its own research infrastructure

A wealth of so�ware research on crucial issues. . .
safety, security, test, verification, proof

so�ware engineering, so�ware evolution

big data, machine learning, empirical studies

If you study the stars, you go to Atacama. . .

. . . where is the very large telescope of source code?

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 5 / 28

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Gory details

5 Come in, we’re open!

6 Conclusion

7 FAQ B_appendix

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 6 / 28

The So�ware Heritage Project

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Our mission
Collect, preserve and share the source code of all the so�ware that is publicly available.

Past, present and future

Preserving the past, enhancing the present, preparing the future.

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 6 / 28

Our principles

Open approach

100% FOSS

transparency

In for the long haul

replication

non profit

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 7 / 28

Our principles

Open approach

100% FOSS

transparency

In for the long haul

replication

non profit

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 7 / 28

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Gory details

5 Come in, we’re open!

6 Conclusion

7 FAQ B_appendix

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 8 / 28

Archiving goals

Targets: VCS repositories & source code releases (e.g., tarballs)

We DO archive
file content (= blobs)

revisions (= commits), with full metadata

releases (= tags), di�o

where (origin) & when (visit) we found any of the above

. . . in a VCS-/archive-agnostic canonical data model

We DON’T archive
homepages, wikis

BTS/issues/code reviews/etc.

mailing lists

Long term vision: play our part in a "semantic wikipedia of so�ware"

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 8 / 28

Data flow

dsc

dsc

hg

hg

hg

git
git

git git

svn

svn

svn

tar

zip

software
origins

Package
repos

Software Heritage
Archive

Forges
GitHub
lister

GitLab
lister

Debian
lister

Git
loader

Mercurial
loader

Debian source
package loader

PyPi
lister

tar loader

Merkle DAG
+

blob storage

.

.

.

.

.

.Distros

...

Scheduling

Listing
(full/incremental)

Loading
& deduplication

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 9 / 28

Example: a So�ware Heritage revision

Note: most object kinds currently have Git-compatible identifiers

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 10 / 28

The archive: a (giant) Merkle DAG

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 11 / 28

Archive coverage

Current sources
live: GitHub, Debian

one-o�: Gitorious, Google Code

WIP: Bitbucket

150 TB blobs, 5 TB database (as a graph: 7 B nodes + 60 B edges)

The richest public source code archive, . . . and growing daily!

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 12 / 28

Archive coverage

Current sources
live: GitHub, Debian

one-o�: Gitorious, Google Code

WIP: Bitbucket

150 TB blobs, 5 TB database (as a graph: 7 B nodes + 60 B edges)

The richest public source code archive, . . . and growing daily!

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 12 / 28

Archive coverage

Current sources
live: GitHub, Debian

one-o�: Gitorious, Google Code

WIP: Bitbucket

150 TB blobs, 5 TB database (as a graph: 7 B nodes + 60 B edges)

The richest public source code archive, . . . and growing daily!

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 12 / 28

So�ware stack

3rd party

Debian, Puppet

PostgreSQL for metadata storage, with barman & pglogical

Celery (RabbitMQ backend) for task scheduling

Python3 and psycopg2 for the backend

Flask and Bootstrap for Web stu�

Phabricator

in house
ad hoc object storage (to avoid imposing tech to mirrors)

data model implementation, listers, loaders, scheduler

~60 Git repositories (~20 Python packages, ~30 Puppet modules)

~30 kSLOC Python / ~12 kSLOC SQL / ~4 kSLOC Puppet

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 13 / 28

Hardware stack

in house
2x hypervisors with ~20 VMs

2x high density storage array (60 * 6TB => 300TB usable)

on Azure
full object storage mirror

full mirror of the database containing the graph

workers for content indexing

workers for download bundle preparation

at the University of Bologna

backend storage (60TB) for the bundles available for download

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 14 / 28

So�ware development

classic FOSS development

language: English

development mailing list
https://sympa.inria.fr/sympa/info/swh-devel

IRC
#swh-devel / FreeNode

Forge
https://forge.softwareheritage.org

Git, tasks, code review, etc.

for more information
https://www.softwareheritage.org/community/developers/

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 15 / 28

https://sympa.inria.fr/sympa/info/swh-devel
https://forge.softwareheritage.org
https://www.softwareheritage.org/community/developers/

Roadmap

Features. . .
(done) lookup by content hash
browsing: "wayback machine" for archived code

(done) via Web API
(early access) via Web UI

(early access) deposit of source code bundles directly to the archive

(early access) download: wget / git clone from the archive

(todo) provenance lookup for all archived content

(todo) full-text search on all archived source code files

. . . and much more than one could possibly imagine

all the world’s so�ware development history in a single graph!

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 16 / 28

Roadmap

Features. . .
(done) lookup by content hash
browsing: "wayback machine" for archived code

(done) via Web API
(early access) via Web UI

(early access) deposit of source code bundles directly to the archive

(early access) download: wget / git clone from the archive

(todo) provenance lookup for all archived content

(todo) full-text search on all archived source code files

. . . and much more than one could possibly imagine

all the world’s so�ware development history in a single graph!

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 16 / 28

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Gory details

5 Come in, we’re open!

6 Conclusion

7 FAQ B_appendix

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 17 / 28

Technology: how do you store the SWH DAG?

Problem statement
How would you store and query a graph with 10 billion nodes and 60 billion edges?

How would you store the contents of more than 3 billion files, 300TB of raw data?

on a limited budget (100 000 € of hardware overall)

Our hardware stack
two hypervisors with 512GB RAM, 20TB SSD each, sharing access to a storage
array (60 x 6TB spinning rust)

one backup server with 48GB RAM and another storage array

Our so�ware stack
A RDBMS (PostgreSQL, what else?), for storage of the graph nodes and edges

filesystems for storing the actual file contents

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 17 / 28

Technology: how do you store the SWH DAG?

Problem statement
How would you store and query a graph with 10 billion nodes and 60 billion edges?

How would you store the contents of more than 3 billion files, 300TB of raw data?

on a limited budget (100 000 € of hardware overall)

Our hardware stack
two hypervisors with 512GB RAM, 20TB SSD each, sharing access to a storage
array (60 x 6TB spinning rust)

one backup server with 48GB RAM and another storage array

Our so�ware stack
A RDBMS (PostgreSQL, what else?), for storage of the graph nodes and edges

filesystems for storing the actual file contents

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 17 / 28

Technology: archive storage components

Metadata storage

Python module swh.storage

thin Python API over a pile of PostgreSQL functions

motivation: keeping relational integrity at the lowest layer

Content ("object") storage

Python module swh.objstorage

very thin object storage abstraction layer (PUT, APPEND and GET) over regular
storage technologies

separate layer for asynchronous replication and integrity management
(swh.archiver)

motivation: stay as technology neutral as possible for future mirrors

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 18 / 28

Technology: object storage

Current primary deployment

Storage on 16 sharded XFS filesystems; key = sha1 (content), value = gzip (content)

if sha1 = abcdef01234. . . , file path = / srv / storage / a / ab / cd / ef / abcdef01234. . .

3 directory levels deep, each level 256-wide = 16 777 216 directories (1 048 576 per
partition)

Secondary deployment

Storage on Azure blob storage

16 storage containers, objects stored in a flat structure there

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 19 / 28

Technology: object storage review

Generic model is fine
The abstraction layer is fairly simple and generic, and the implementation of the upper
layers (replication, integrity checking) was a breeze.

Filesystem implementation is bad

Slow spinning storage + li�le RAM (48GB) + 16 million dentries = (very) bad performance

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 20 / 28

Technology: metadata storage

Current deployment

PostgreSQL deployed in primary/replica mode, using pg_logical for replication:
di�erent indexes on primary (tuned for writes) and replicas (tuned for reads).

most logic done in SQL

thin Pythonic API over the SQL functions

end goals

proper handling of relations between objects at the lowest level

doing fast recursive queries on the graph (e.g. find the provenance info for a
content, walking up the whole graph, in one single query)

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 21 / 28

Technology: metadata storage review

Limited resources
PostgreSQL works really well

. . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage
but Massive deduplication = exponential width for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 22 / 28

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage
but Massive deduplication = exponential width for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 22 / 28

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage
but Massive deduplication = exponential width for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 22 / 28

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage

but Massive deduplication = exponential width for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 22 / 28

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage
but Massive deduplication = exponential width for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 22 / 28

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage
but Massive deduplication = exponential width for recursive queries

Reality check

Referential integrity?

Real repositories downloaded from the internet are all kinds of
broken.

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 22 / 28

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage
but Massive deduplication = exponential width for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 22 / 28

Technology: outlook

Object storage

Our azure prototype shows that using a scale-out "cloudy" technology for our object
storage works really well. Plain filesystems on spinning rust, not so much.

We have started working on a prototype Ceph infrastructure for our main copy of the
archive, as our budget ramps up.

Metadata storage

Our initial assumption that we wanted referential integrity and built-in recursive
queries was wrong.
We could probably migrate to "dumb" object storages for each type of object, with
another layer to check metadata integrity regularly.

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 23 / 28

Technology: outlook

Object storage

Our azure prototype shows that using a scale-out "cloudy" technology for our object
storage works really well. Plain filesystems on spinning rust, not so much.
We have started working on a prototype Ceph infrastructure for our main copy of the
archive, as our budget ramps up.

Metadata storage

Our initial assumption that we wanted referential integrity and built-in recursive
queries was wrong.
We could probably migrate to "dumb" object storages for each type of object, with
another layer to check metadata integrity regularly.

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 23 / 28

Technology: outlook

Object storage

Our azure prototype shows that using a scale-out "cloudy" technology for our object
storage works really well. Plain filesystems on spinning rust, not so much.
We have started working on a prototype Ceph infrastructure for our main copy of the
archive, as our budget ramps up.

Metadata storage

Our initial assumption that we wanted referential integrity and built-in recursive
queries was wrong.

We could probably migrate to "dumb" object storages for each type of object, with
another layer to check metadata integrity regularly.

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 23 / 28

Technology: outlook

Object storage

Our azure prototype shows that using a scale-out "cloudy" technology for our object
storage works really well. Plain filesystems on spinning rust, not so much.
We have started working on a prototype Ceph infrastructure for our main copy of the
archive, as our budget ramps up.

Metadata storage

Our initial assumption that we wanted referential integrity and built-in recursive
queries was wrong.
We could probably migrate to "dumb" object storages for each type of object, with
another layer to check metadata integrity regularly.

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 23 / 28

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Gory details

5 Come in, we’re open!

6 Conclusion

7 FAQ B_appendix

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 24 / 28

You can help!

Coding

forge.softwareheritage.org — our own code

888 listers for unsupported forges, distros, pkg. managers
888 loaders for unsupported VCS, source package formats
88 Web UI: eye candy wrapper around the Web API

Community

88 spread the news, help us with long-term sustainability
888 document endangered source code
wiki.softwareheritage.org/index.php?title=Suggestion_box

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 24 / 28

forge.softwareheritage.org
wiki.softwareheritage.org/index.php?title=Suggestion_box

You can help!

Coding

forge.softwareheritage.org — our own code

888 listers for unsupported forges, distros, pkg. managers
888 loaders for unsupported VCS, source package formats
88 Web UI: eye candy wrapper around the Web API

Community

88 spread the news, help us with long-term sustainability
888 document endangered source code
wiki.softwareheritage.org/index.php?title=Suggestion_box

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 24 / 28

forge.softwareheritage.org
wiki.softwareheritage.org/index.php?title=Suggestion_box

The So�ware Heritage community

Core team
10 people working on the project full-time, split across engineering, research, and
fundraising/management topics.

Inria as initiator
.fr national computer science research entity

strong Free So�ware culture

Early Sponsors and Supporters

Société Générale, Microso�, Huawei, Nokia, DANS, Univ. Bologna, ACM, Creative
Commons, Eclipse, Engineering, FSF, Gandi, GitHub, IEEE, OIN, OSI, OW2, So�ware
Freedom Conservancy, SFLC, The Document Foundation, . . .

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 25 / 28

The So�ware Heritage community

Core team
10 people working on the project full-time, split across engineering, research, and
fundraising/management topics.

Inria as initiator
.fr national computer science research entity

strong Free So�ware culture

Early Sponsors and Supporters

Société Générale, Microso�, Huawei, Nokia, DANS, Univ. Bologna, ACM, Creative
Commons, Eclipse, Engineering, FSF, Gandi, GitHub, IEEE, OIN, OSI, OW2, So�ware
Freedom Conservancy, SFLC, The Document Foundation, . . .

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 25 / 28

The So�ware Heritage community

Core team
10 people working on the project full-time, split across engineering, research, and
fundraising/management topics.

Inria as initiator
.fr national computer science research entity

strong Free So�ware culture

Early Sponsors and Supporters

Société Générale, Microso�, Huawei, Nokia, DANS, Univ. Bologna, ACM, Creative
Commons, Eclipse, Engineering, FSF, Gandi, GitHub, IEEE, OIN, OSI, OW2, So�ware
Freedom Conservancy, SFLC, The Document Foundation, . . .

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 25 / 28

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Gory details

5 Come in, we’re open!

6 Conclusion

7 FAQ B_appendix

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 26 / 28

Conclusion

It is urgent to preserve so�ware source code; So�ware Heritage has took a
systematic approach at it and has already assembled the largest archive to date.

So�ware Heritage responds to cultural, research, and industry needs; it is a shared
infrastructure that can benefit us all.

We should collaborate and pool resources to make it so.

References
Roberto Di Cosmo, Stefano Zacchiroli. So�ware Heritage: Why and How to Preserve So�ware
Source Code. iPRES 2017. Preprint: http://deb.li/swhipres17

Come in, we’re open!

www.softwareheritage.org — sponsoring, job openings
wiki.softwareheritage.org — internships, leads
forge.softwareheritage.org — our own code

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 26 / 28

http://deb.li/swhipres17
www.softwareheritage.org
wiki.softwareheritage.org
forge.softwareheritage.org

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Gory details

5 Come in, we’re open!

6 Conclusion

7 FAQ B_appendix

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 27 / 28

Q: do you archive only Free So�ware?

We only crawl origins meant to host source code (e.g., forges)

Most (~90%) of what we actually retrieve is textual content

Our goal

Archive the entire Free So�ware Commons

Large parts of what we retrieve is already Free So�ware, today
Most of the rest will become Free So�ware in the long term

e.g., at copyright expiration

Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 27 / 28

Q: how about SHA1 collisions?

create domain sha1 as bytea
check (l e n g t h (value) = 2 0) ;

create domain s h a 1 _ g i t as bytea
check (l e n g t h (value) = 2 0) ;

create domain sha256 as bytea
check (l e n g t h (value) = 3 2) ;

create table c o n t e n t (
sha1 sha1 primary key ,
s h a 1 _ g i t s h a 1 _ g i t not null ,
sha256 sha256 not null ,
l e n g t h b i g i n t not null ,
c t ime t imes tamptz not nul l defaul t now () ,
s t a t u s c o n t e n t _ s t a t u s not nul l defaul t ’ v i s i b l e ’ ,
o b j e c t _ i d b i g s e r i a l

) ;

create unique index on c o n t e n t (s h a 1 _ g i t) ;
create unique index on c o n t e n t (sha256) ;Nicolas Dandrimont So�ware Heritage 2018-02-13 Inria Saclay 28 / 28

	The Software Commons
	Software Heritage
	Architecture
	Gory details
	Come in, we're open!
	Conclusion
	FAQB_appendix

