
LoRaWAN

IoT protocols
iser

Overview of LoRaWAN

Designed by Semtech and promoted by the LoRa Alliance

First release 1.0 of the LoRaWaN specification in 2015

Latest release 1.1 in 2018

Based on long range radio communication modulation, LoRa

Star network topology ⇒ devices talks to the network via gateways

https://www.semtech.com/
http://www.lora-alliance.org/

A few words on LoRa

Long range radio technology

Spread Spectrum modulation:

⇒ "Chirp Spread Spectrum"

Very robust to noise

Raising the spreading factor:

increases the range (until several
kilometers)
decreases the bandwidth
increases the time on air

The LoRaWAN protocol

Different frequency bands depending on the geographical regions

Use LoRa modulation

3 device classes ⇒ A, B & C

The application layer is directly on top of the MAC layer

Access to the physical layer

Public and free ISM bands used: EU868 (ETSI), US915, etc

Bands are divided into channels of 3 different widths: 125kHz, 250kHz ou
500kHz

Time constrained access to the physical layer ⇒ Duty Cycle (1% / channel)

Example: at least 16 channels can be used in EU868 band

Class A & C devices

Class A device

Can only receive after a send
Smallest power consumption
Can be used on battery

Power consumption of a class A device

Class C device

Always listening: low latency
More power consumption
Cannot be used on battery

LoRaWAN network architecture

Devices and gateways exchange messages using LoRa communications

Gateway are connected to the network server via regular Internet protocols

Users access their data via an application connected to the network server

Security of the data is garantueed by AES encryption (symmetric keys)

Structural overview of the network parts

Gateway manufacturers

IMST Lite Gateway
https://shop.imst.de
Kerlink https://www.kerlink.fr/
Multitech:
https://www.multitech.com/

Network servers implementation

https://www.loraserver.io/
(Opensource)
https://www.resiot.io/en/

https://shop.imst.de/
https://www.kerlink.fr/
https://www.multitech.com/
https://www.loraserver.io/
https://www.resiot.io/en/

How to program the end-device
Existing open-source implementations:

Arduino LMIC https://github.com/matthijskooijman/arduino-lmic ⇒ nearly
unmaintained

Arduino LoRa https://github.com/sandeepmistry/arduino-LoRa ⇒ active

Loramac-node https://github.com/Lora-net/LoRaMac-node ⇒ reference
implementation, used for certification from LoRa Alliance

End-device high-level support (generally based on Loramac-node):

ARM mbedOS: https://www.mbed.com/en/platform/mbed-os/

Mynewt: https://mynewt.apache.org/

Micropython: https://pycom.io/

RIOT: https://riot-os.org/

https://github.com/matthijskooijman/arduino-lmic
https://github.com/sandeepmistry/arduino-LoRa
https://github.com/Lora-net/LoRaMac-node
https://www.mbed.com/en/platform/mbed-os/
https://mynewt.apache.org/
https://pycom.io/
https://riot-os.org/

Device communication on the network

Every device is identified by a 4 bytes address

"Network session key" ⇒ used to encrypt the network related data (MAC)

"Application session key" ⇒ used to encrypt the application related data

Activation procedures
To exchange data, all devices must be activated by the network

⇒ 2 type of activation procedures:

Over-The-Air Activation(OTAA)

Activation By Personnalization (ABP)

Activation procedures
in OTAA:

Requires Device EUI, Application EUI and Application Key information

The device initiates a handshake with the server to get its address and a
"nonce" ⇒ the device address changes after each activation

The 2 session keys are derived from the application key and the nonce

in ABP

Requires Application session key, Network session key and device address

No handshake required

Network operators
Lots of public network operators:

Actility https://www.actility.com/

Loriot https://www.loriot.io/

Objenious (Bouygues Telecom) http://objenious.com/

Orbiwise https://www.orbiwise.com/

TheThingsNetwork https://www.thethingsnetwork.org/

https://www.actility.com/
https://www.loriot.io/
http://objenious.com/
https://www.orbiwise.com/
https://www.thethingsnetwork.org/

TheThingsNetwork (TTN)
The network deployment is community based

Software stack is open-source

Unlimited access to the backend

no device limit

no message limit (with respect to the duty-cycle)

friendly API (MQTT)

First steps with TTN
1. Create an account

https://account.thethingsnetwork.org/register

Manage your gateways and application from your web console:
https://console.thethingsnetwork.org/

2. Managing your gateways (optional)
https://www.thethingsnetwork.org/docs/gateways/registration.html

3. Creating an application
https://www.thethingsnetwork.org/docs/applications/add.html

4. Register your device(s)
https://www.thethingsnetwork.org/docs/devices/registration.html

https://account.thethingsnetwork.org/register
https://console.thethingsnetwork.org/
https://www.thethingsnetwork.org/docs/gateways/registration.html
https://www.thethingsnetwork.org/docs/applications/add.html
https://www.thethingsnetwork.org/docs/devices/registration.html

Example: using RIOT
Loramac port documentation
http://doc.riot-os.org/group__pkg__semtech-loramac.html

Build and run the test/demo application provided by RIOT

Configure the device using the shell of RIOT

Join the network using OTAA activation procedure

Send (and eventually receive) messages to the network

http://doc.riot-os.org/group__pkg__semtech-loramac.html

The TTN MQTT API
MQTT protocol uses a publish/subscribe approach

TTN MQTT API documentation
https://www.thethingsnetwork.org/docs/applications/mqtt/

Reference implementation provided by the Eclipse Mosquitto project
https://mosquitto.org/

Eclipse also provides a python library: paho
https://www.eclipse.org/paho/

https://www.thethingsnetwork.org/docs/applications/mqtt/
https://mosquitto.org/
https://www.eclipse.org/paho/

Using the MQTT API

Listening to upling messages (device to network):

Sending a downling message (network to device):

Integration with external services
Use of TTN http and/or MQTT API to retrieve the IoT data

Super simple to integrate

Available services:

Customizable dashboards with Cayenne
https://mydevices.com/

Location service with Collos
http://preview.collos.org/

Gather and analyze workspace use and sensors with OpenSensors
https://opensensors.com/

Just store your IoT data with TheThingsIndustries
https://www.thethingsindustries.com/

https://mydevices.com/
http://preview.collos.org/
https://opensensors.com/
https://www.thethingsindustries.com/

An example: Cayenne
https://mydevices.com/cayenne/docs/lora/#lora-the-things-network

Create only dashboards in a few clicks from your LoRaWAN data

Access your sensor data from anywhere

Payload format requirement: Low Power Payload (LPP)

Library available for python/micropython:
https://github.com/jojo-/py-cayenne-lpp

Library available for Arduino (C++):
https://github.com/sabas1080/CayenneLPP

Generic library in C
https://github.com/aabadie/cayenne-lpp

https://mydevices.com/cayenne/docs/lora/#lora-the-things-network
https://github.com/jojo-/py-cayenne-lpp
https://github.com/sabas1080/CayenneLPP
https://github.com/aabadie/cayenne-lpp

Demo

