
ProgressiVis:
a New Computation Paradigm for

Scalability in Exploratory Data Analysis

Jean-Daniel Fekete & Christian Poli
INRIA http://www.aviz.fr/~fekete

http://www.aviz.fr/~fekete

Data at Scale

• “Confirmatory” Data Analysis, or Analytics, has
scaled dramatically in the last 20 years
– Following Moore’s law

• With the increase of storage and parallel
architectures, it continues to scale

• What about “Exploratory” Data Analysis?

Sequential Execution Paradigm

Current computers and programming languages
rely on the sequential execution paradigm

• Computing f(g(x)) requires computing y=g(x)
then f(y)

• Time to completion is time(g(x))+time(f(y))

• This time is not bounded

• Human cognition requires a latency < 10s

Using Analytics for Exploration

• Scalable infrastructures provide
high-throughput with high-latency
– Big black boxes that run to completion with no

time-to-deliver guarantees

• Can we get interactive-time responses with
scalability?
– Tinkering with tools can work, but is tedious

– Progressive Data Analysis is meant as a solution

Exploration and Latency

3 types of latency to consider for HCI:
1. Continuity Preserving Latency: ~0.1s user feel that the

system is reacting instantaneously
2. Flow Preserving Latency: ~1s user’s flow of thought

to stay uninterrupted
3. Attention Preserving Latency: ~10s keeping the user’s

attention focused on the dialogue
• R. B. Miller. Response time in man-computer conversational transactions. In

Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part
I, AFIPS ’68 (Fall, part I), pages 267–277, New York, NY, USA, 1968. ACM.

• J. Nielsen. Response times: The 3 important limits,
https://www.nngroup.com/articles/response-times-3-important-limits/

• B. Shneiderman. Response time and display rate in human performance with
computers. ACM Comput. Surv., 16(3):265–285, Sept. 1984.

https://www.nngroup.com/articles/response-times-3-important-limits/

Scaling Visualizations

• Vis. does not scale well
– Not in number of items
– Not in number of dimensions

• It needs additional methods
such as:
– Sampling (of items/dim.)
– Aggregation
– Dimensionality Reduction

• These methods introduce
artifacts
– Their results should be

explored too, to be validated!

Scaling Visualizations

• Many visualization
techniques suffer from
overplotting
– Scatterplots
– Parallel Coordinates
– Even Pie Charts

• Repairing these
artifacts require
analytical operations

Scaling Visualizations

Using more complex visualizations
require analytical operations

e.g. histogram computations,
aggregations using log functions...

Progressive Data Analysis

• Allow Exploratory tools
to work while the
computation is being
done

• Many articles mention it
• Some systems

implement it in ad-hoc
ways

• No realistic model to
implement it in general

Williams, M.; Munzner, T., "Steerable, Progressive Multidimensional
Scaling," in INFOVIS 2004.

Charles D. Stolper, Adam Perer, and David Gotz. Progressive Visual
Analytics. IEEE TVCG (Volume 20, Issue 12, 2014).

Progressive Data Analysis

1. Produce improving estimates
– With bounded latency

2. Converge to result

3. Allows Steering
– Change any parameter

4. Produce measures of:
– Quality (higher is better)

– Progress (current position, end position)

Benefits of Progressive Data Analysis

• Scalability
– Exploration of large datasets

and complex algorithms at a human pace

• Early decisions
– Abort when results are useless

or algorithms not well configured

• Algorithm understanding
– Seeing the results as they are computed

helps understand the algorithm behavior
(sometimes, more research needed)

ProgressiVis: New Execution Semantics
with Christian Poli and Romain Primet

data=CSVLoader('bigfile.csv')

minmax = MinMax(data)

histo = Histogram2D(data, minmax)

sample = Sample(data, 500)

plot = Scatterplot(histo, sample, minmax)

show(plot)

ProgressiVis:
Splitting the Computation in Chunks

Load
Dataset

Compute
Min/Max

Compute
2D

Histogram

Compute
Random
Sample

Visualize
Heatmap
Scatter-

plot

ProgressiVis:
Splitting the Computation in Chunks

URLS = [PREFIX+'yellow_tripdata_2015-01.csv'+SUFFIX,
 PREFIX+'yellow_tripdata_2015-02.csv'+SUFFIX,
 ...]
filenames = pd.DataFrame({'filename': URLS})
cst = Constant(df=filenames)
csv = CSVLoader()
csv.input.filenames = cst.output.df
pr = Every()
pr.input.df = csv.output.df
scatterplot = ScatterPlot('pickup_longitude',
 'pickup_latitude')
scatterplot.create_dependent_modules(csv,'df')

Dataflow Graph

ProgressiVis:
Splitting the Computation in Chunks

• Each module is given a quantum to run (~1s)

• At the end of its quantum, it should provide a
useful result, even if partial or approximate

• Modules are run in round-robin dependency
order until they reach the end of their
computation

• Additionally, interaction is possible to steer
and modify module parameters!

ProgressiVis:
Splitting the Computation in Chunks

Load
Dataset

Compute
Min/Max

Compute
2D

Histogram

Compute
Random
Sample

Visualize
Heatmap
Scatter-

plot

Load
Dataset

Compute
Min/Max

Compute
2D

Histogram

Compute
Random
Sample

Visualize
Heatmap
Scatter-

plot

1s 1s 1s 1s 1s

Iterate

Demo

ProgressiVis: Work In Progress
Internals

• Python toolkit
– with a built-in web server for control
– being connected to the Jupyter notebook

• Unified representation of Data to communicate between modules
– Specific “Change Management” in Modules

• Modules are run in a specific thread by a Scheduler
– 2 modes, normal “round robin” after topological sort of modules

• Modules are asynchronous tasks using Python asyncio
– Each task runs for a bounded amount of time and yield a result

• Time Prediction
– Algorithms are never parametrized by time, at best by # of “steps” to perform,

usually implicitly
– Each module is told to run a certain number or steps
– Predicting the number of steps to stay within the quantum requires analyzing

(mining) the execution trace.

Data Tables: Problems

• Data Tables as DataFrames like
Python/Pandas and R

• EDA requires column-oriented tables

• Pandas cannot grow tables nicely

• ProgressiVis implements a change manager

• Initially, as an additional column _update in
DataFrames
– Not scalable (time to compute changes linear in # of rows)

– Bugs in Pandas DataFrame subclassing

Data Tables: Solution

• ProgressiVis Tables are column oriented
– Growable
– Trade-offs to keep columns contiguous

• mmap for growable memory with persistence

– Chunked columns would be better but not well
supported by other libraries

– ProgressiVis allows using other basic
implementations for columns (Zarr, blosc, HDF5)
• but not efficient currently

• Views for slices AND masked/filtered
• Change tracking for the Change Manager

Change Manager

• When re-entering an algorithm with updated
data, the algorithm needs to know what has
changed upstream

• Min module takes a column (or many)
– computes the min the first time
– maintains it when the column changes
– but what has changed?

• Structure called IndexUpdate (Delta):
– what has been created, updated, deleted
– Compressed bitmaps (RoaringBitmap)

Example: Min module
 async def run_step(self, run_number, step_size, howlong):

 dfslot = self.get_input_slot('table')

 dfslot.update(run_number)

 if dfslot.updated.any() or dfslot.deleted.any():

 dfslot.reset()

 self._table.resize(0)

 dfslot.update(run_number)

 indices = dfslot.created.next(step_size)

 steps = len(indices)

 if steps==0:

 return self._return_run_step(self.state_blocked, steps_run=0)

 input_df = dfslot.data()

 op = self.filter_columns(input_df, indices).min(keepdims=True)

 if len(self._table)!=0:

 last = self._table.last()

 for colname in last:

 current_max = op[colname]

 current_max[0] = np.minimum(current_max, last[colname])

 self._table.append(op)

 return self._return_run_step(self.next_state(dfslot), steps_run=steps)

Interaction and Steering

• The Scheduler has a special mode for “direct
manipulation”

• 2 special types of modules: input and output
– Inputs can receive messages from the outside world at

any time
• e.g. {’query’: ’-74.20 < pickup_longitude < -73.1’}

– Outputs show information to the outside world (e.g.
visualizations)

• Direct manipulations restrict the execution to
modules between the touched inputs and the
dependent outputs during 100ms (latency 1)

ProgressiVis:
Interaction and Steering

K-Means Clustering

data = CSVLoader(get_dataset('cluster:s3'))
mbkmeans = MBKMeans(columns=[0, 1], n_clusters=15)
mbkmeans.input.df = data.output.df
prn = Every()
prn.input.df = mbkmeans.output.df
sp = ScatterPlot(0,1)
sp.move_point = mbkmeans
histogram2d = Histogram2D(0, 1)
histogram2d.input.df = data.output.df
min = Min(columns=[0,1])
max = Max(columns=[0,1])
min.input.df = data.output.df
max.input.df = data.output.df
histogram2d.input.min = min.output.df
histogram2d.input.max = max.output.df
heatmap = Heatmap()
heatmap.input.array = histogram2d.output.df
sp.input.heatmap = heatmap.output.heatmap
sp.input.df = mbkmeans.output.df

ProgressiVis:
Interaction and Steering

Challenges

Progressive Data Analysis raises many questions

• HCI

• Visualization

• Analytics

• Data management

Challenges in HCI

• Are humans able to cope with progressive
data monitoring?
– Latency is detrimental to exploration: "Our study

confirms that an injected delay of half a second
per operation adversely affects user performance
in exploratory data analysis."

– Z. Liu and J. Heer. The effects of interactive latency on exploratory visual analysis. IEEE Transactions
on Visualization and Computer Graphics, 20(12):2122–2131, Dec2014.

• How can we help analysts make sense of data
arriving progressively?

How Progressive Visualizations Affect
Exploratory Analysis [Zgraggen et al. TVCG 2017]

• Experiment

• 4 conditions
– Instantaneous

– Progressive 6s, 12s

– blocking

• 3 datasets

• Count insights

Latency and Exploratory Analysis

• E. Zgraggen, A. Galakatos, A. Crotty, JD Fekete, T. Kraska, How Progressive Visualizations
Affect Exploratory Analysis, TVCG 2017

• Experiment with 4 conditions:
– Instantaneous, Progressive, Latency of 6s and 12s

• Measure # of insights generated by analysts
• Measure coverage explored
• Instantaneous and progressive generate more

insights (p < 0.005) and more coverage
• Participants liked the progressive condition and

disliked the blocking conditions.

Steering the Craft
UI Elements and Visualizations for Supporting
Progressive Visual Analytics [Badam et al. 2017]

Sriram Karthik Badam,
Niklas Elmqvist, Jean-Daniel Fekete

Human
Computer
Interaction
Laboratory

UI Elements and Visualizations
for Progressive Visual Analytics

• S. K. Badam, N. Elmqvist, JD Fekete, UI Elements and Visualizations for Supporting
Progressive Visual Analytics, Computer Graphics Forum, Volume 36, Issue 3
June 2017 , ages 491–502

• What information should we provide to
analysts to benefit from PVA?
– Early decision

– Time remaining to complete

– Is it converging / useful?

– Monitor mode vs. exploration mode

– Consistency!

Interface: InsightsFeed for Twitter Data

List of Tweets with
Keyword Highlighting

Sentiment
Visualization

Popularity of
Users

Tweet Map created by
tSNE Projection

UI Elements for Feedback and Control

InsightsFeed

Five UI Elements for PVA
• Progression towards stability

• Enhanced progress bars

– Quality of computations

• Controlling playback

• Interactivity for visual exploration

• Steering results

Enhanced Progress Bars

15250 25K

Absolute progress within the datasetRelative progress of the algorithms
Quality: convergence, inverse of error Time spent, iterations, items

Flashing indicates impending changes

Control Playback

Access history of states

Pause/play/stop

Interactivity for Visual Exploration

Control Playback

Open other settings

Steering Computations

Feedback

Controls

User Evaluation
Goal: Understanding effects of progressive UI elements on visual exploration

10 participants
from

HCI/visualization
research labs 8 male 2 female

2 interfaces
(25 min each)

5 questions from
two Twitter datasets

(Clinton, Trump)

Progressive Visual Analytics

Instantaneous Visual Analyticsvs.

Q1: most frequent sentiment
Q2: popular users
Q3: frequent keywords
Q4: representative tweet
Q5: keywords associated with popular terms

Takeaway: Five UI Elements for
PVA

• Progression towards stability

• Enhanced progress bars

• Quality of computations

• Controlling playback

• Steering results

• Interactivity for visual exploration

ProgressiVis:
Challenges in Visualization

Adapting existing visualization techniques to
become progressive
• Managing the scale
– Scatterplots was an example, using

aggregation+sampling (+landmarks)
– what about the others techniques?

• Managing the incoming changes
– e.g. differentiate monitoring/exploration modes

• Managing the interaction

Uniclass

Multiclass

Scatterplots Density Maps

?
Density maps can scale up conventional scatterplots,

but it is nontrivial to visualize multiclass data on a density map.

Challenges in Visualization

Challenges in Visualization

Challenges in Visualization

ProgressiVis: Challenges in Visualization

ProgressiVis:
Challenges in Analytics

Integration with Python, Julia, R?

• Breaks the numpy/scipy API semantics
– not limited to one function call with a ret. value

• Need to rebuild a data analysis stack
– Progressive Data Loading/saving/access
– Progressive Computations (fundamental algos.)
– Progressive Linear Algebra
– Progressive ML
– Progressive VIS
– Progressive HCI

ProgressiVis:
Challenges in Analytics

What algorithms can be made progressive?
• The most useful operations can be done in a

progressive way
– Looking at Scikit Learn, about 80% can be made

progressive, with various levels of efforts

• Some algorithms are challenging (e.g. hierarchical
clustering) but there are possible replacements

• The quantum constrains the algorithms, they
sometimes have to be adapted

• Can also use Data-Streaming Approx. methods
such as "Data Sketching"

ProgressiVis: Computational Modules

MDS

Compute
Min/Max

Compute
2D

Histogram

Compute
Random
Sample

Visualize
Heatmap
Scatter-

plot

Visible
Bounds

(MinMax)

Load
Dataset

Compute
Distances

Adapting Distance Computation

• For a table with n rows, compute the n×n matrix for pairwise
distances (e.g. Euclidean)

• Complexity is O(n2)
• The progressive version computes the distances as they come

when loaded, or in steps of less than 1s if they are already loaded
• Update the existing matrix of m×m with p new rows:

– Compute the distances of (rectangular), m×p = T(m×p)
– Compute the distances of p×p (square)
– Assemble the final matrix

• However, approximate nearest neighbors are more adapted to
progressive methods since O(n log(n))
Jaemin Jo, Jinwook Seo, Jean-Daniel Fekete, A Progressive K-D Tree for Approximate
K-Nearest Neighbors, Data Systems for Interactive Analysis (DSIA 2017) Workshop

Progressive
Multidimensional Projections

Based on the (progressive) computation of the
k-nearest neighbors

Jaemin Jo, Jinwook Seo, Jean-Daniel Fekete. PANENE: A Progressive Algorithm for Indexing
and Querying Approximate k-Nearest Neighbors. IEEE Transactions on Visualization and
Computer Graphics, IEEE, 2020, 26 (2), pp.1347-1360.

Progressive PCA for
Massive Time-Series

Multiple methods to compute PCA.

Three can be used in a progressive
setting:

1. Power-Iteration with Momentum
C. De Sa, B. He, I. Mitliagkas, C. Ré, and P. Xu.
Accelerated stochastic power iteration. arXiv
preprint arXiv:1707.02670, 2017

2. Randomized PCA
N. Halko, P.-G. Martinsson, and J. A. Tropp.
Finding structure with randomness:
Probabilistic algorithms for constructing
approximate matrix decompositions. SIAM
review, 53(2):217–288, 2011

3. Incremental PCA
D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang.
Incremental learning for robust visual
tracking.International journal of computer
vision, 77(1-3):125–141, 2008.

https://docs.google.com/file/d/135Ut34OMq0jI3oATDQjXAPUvUCQ7-kL6/preview

ProgressiVis:
Challenges in Data Management

• Progressive Loading (data not in the database)
– when the stored order is correlated with some

attribute (e.g. temperature or time), Min/Max
computation does not converge quickly

– Need to shuffle or access data stochastically
• Progressive Queries
– Online queries/aggregation/joins

• Progressive Computations
– Stochastic gradient descent already addressed for

some cases
– More general computations?

ProgressiVis: Humanized Analytics

• Computation infrastructure are meant to optimize
machine resources

• Exploration needs to optimize human resources

• If you’re interested in any of the challenge, let me
know!

http://github.com/jdfekete/progressivis
Work in progress!

http://github.com/jdfekete/progressivis

