
Retour d’expérience sur des tests de performances via
Google Benchmark

Virgile Dubos 1

December 12, 2024

1POEMS, CNRS, Inria, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau,
France.

Virgile Dubos Code benchmarking December 12, 2024 1 / 18

Outline

1 Benchmarking in a nutshell

2 Before you get started

3 Google Benchmark: basic examples

4 Google Benchmark: advance features

5 Sources

Virgile Dubos Code benchmarking December 12, 2024 2 / 18

Benchmarking in a nutshell

Measurement of code "performance" (execution time, memory usage,
throughput, energy consumption, ...).

Comparison between "equivalent" code:
▶ Models (PDEs, empirical/mathematical approximations, ...).
▶ Algorithms (direct/iterative solvers, preconditioners, sorting algorithms, ...).
▶ Systems (parallel computations, hardware, compilers, ...).
▶ Parameters (problem size, number of threads, expected error, ...).
▶ Concepts (design patterns, data structures, programming paradigms, ...).

Extent of benchmarking:
▶ Microbenchmark ∼ unit tests: very specific sections of code (sorting

algorithms, matrix multiplication, vector addition, ...), can be easily skewed
(beware !!!).

▶ Macrobenchmark ∼ integration tests: broader sequences, impactful from the
user point of view (PDEs solvers, softwares, ...).

Benchmarking ̸= profiling (identifying performance bottlenecks), same
purpose (optimizing code) complementary approaches.
Benefits: evaluating changes/differences, identifying performance regressions,
ensuring compatibility/requirements, debugging.

Virgile Dubos Code benchmarking December 12, 2024 3 / 18

Benchmarking in a nutshell

Measurement of code "performance" (execution time, memory usage,
throughput, energy consumption, ...).
Comparison between "equivalent" code:

▶ Models (PDEs, empirical/mathematical approximations, ...).
▶ Algorithms (direct/iterative solvers, preconditioners, sorting algorithms, ...).
▶ Systems (parallel computations, hardware, compilers, ...).
▶ Parameters (problem size, number of threads, expected error, ...).
▶ Concepts (design patterns, data structures, programming paradigms, ...).

Extent of benchmarking:
▶ Microbenchmark ∼ unit tests: very specific sections of code (sorting

algorithms, matrix multiplication, vector addition, ...), can be easily skewed
(beware !!!).

▶ Macrobenchmark ∼ integration tests: broader sequences, impactful from the
user point of view (PDEs solvers, softwares, ...).

Benchmarking ̸= profiling (identifying performance bottlenecks), same
purpose (optimizing code) complementary approaches.
Benefits: evaluating changes/differences, identifying performance regressions,
ensuring compatibility/requirements, debugging.

Virgile Dubos Code benchmarking December 12, 2024 3 / 18

Benchmarking in a nutshell

Measurement of code "performance" (execution time, memory usage,
throughput, energy consumption, ...).
Comparison between "equivalent" code:

▶ Models (PDEs, empirical/mathematical approximations, ...).
▶ Algorithms (direct/iterative solvers, preconditioners, sorting algorithms, ...).
▶ Systems (parallel computations, hardware, compilers, ...).
▶ Parameters (problem size, number of threads, expected error, ...).
▶ Concepts (design patterns, data structures, programming paradigms, ...).

Extent of benchmarking:
▶ Microbenchmark ∼ unit tests: very specific sections of code (sorting

algorithms, matrix multiplication, vector addition, ...), can be easily skewed
(beware !!!).

▶ Macrobenchmark ∼ integration tests: broader sequences, impactful from the
user point of view (PDEs solvers, softwares, ...).

Benchmarking ̸= profiling (identifying performance bottlenecks), same
purpose (optimizing code) complementary approaches.
Benefits: evaluating changes/differences, identifying performance regressions,
ensuring compatibility/requirements, debugging.

Virgile Dubos Code benchmarking December 12, 2024 3 / 18

Benchmarking in a nutshell

Measurement of code "performance" (execution time, memory usage,
throughput, energy consumption, ...).
Comparison between "equivalent" code:

▶ Models (PDEs, empirical/mathematical approximations, ...).
▶ Algorithms (direct/iterative solvers, preconditioners, sorting algorithms, ...).
▶ Systems (parallel computations, hardware, compilers, ...).
▶ Parameters (problem size, number of threads, expected error, ...).
▶ Concepts (design patterns, data structures, programming paradigms, ...).

Extent of benchmarking:
▶ Microbenchmark ∼ unit tests: very specific sections of code (sorting

algorithms, matrix multiplication, vector addition, ...), can be easily skewed
(beware !!!).

▶ Macrobenchmark ∼ integration tests: broader sequences, impactful from the
user point of view (PDEs solvers, softwares, ...).

Benchmarking ̸= profiling (identifying performance bottlenecks), same
purpose (optimizing code) complementary approaches.

Benefits: evaluating changes/differences, identifying performance regressions,
ensuring compatibility/requirements, debugging.

Virgile Dubos Code benchmarking December 12, 2024 3 / 18

Benchmarking in a nutshell

Measurement of code "performance" (execution time, memory usage,
throughput, energy consumption, ...).
Comparison between "equivalent" code:

▶ Models (PDEs, empirical/mathematical approximations, ...).
▶ Algorithms (direct/iterative solvers, preconditioners, sorting algorithms, ...).
▶ Systems (parallel computations, hardware, compilers, ...).
▶ Parameters (problem size, number of threads, expected error, ...).
▶ Concepts (design patterns, data structures, programming paradigms, ...).

Extent of benchmarking:
▶ Microbenchmark ∼ unit tests: very specific sections of code (sorting

algorithms, matrix multiplication, vector addition, ...), can be easily skewed
(beware !!!).

▶ Macrobenchmark ∼ integration tests: broader sequences, impactful from the
user point of view (PDEs solvers, softwares, ...).

Benchmarking ̸= profiling (identifying performance bottlenecks), same
purpose (optimizing code) complementary approaches.
Benefits: evaluating changes/differences, identifying performance regressions,
ensuring compatibility/requirements, debugging.

Virgile Dubos Code benchmarking December 12, 2024 3 / 18

Before you get started / Conclusion
Measurement "by hand" in the code.

▶ Advantages: easy to implement and debug.
▶ Disadvantages: lots of manual work, "uncertainty principle".

Benchmarking tools: JMH (Java), BenchmarkDotNet (.NET), Google
Benchmark (C), ...

▶ Advantages: a lot less of manual work, nice looking output.
▶ Disadvantages: harder to use and debug, not easy to understand what happen

under the hood.
Personal recommendation: microbenchmarks with tools, macrobenchmarks
from scratch.
Tips for designing benchmarks:

▶ Benchmark the lowest level of abstraction possible: easier to maintain, scope
of benchmark is better defined.

▶ Occasionally benchmark the entire program.
▶ Best programming practices: really know what/how you should measure.

Tips for running benchmarks:
▶ Reduce noise by preparing the environment: very OS dependent.
▶ Repeat benchmarks: recognize/reduce noise.
▶ Beware of branch prediction and other compiler optimizations.

Bottom line: make sure you get stable and relevant results.

Virgile Dubos Code benchmarking December 12, 2024 4 / 18

Before you get started / Conclusion
Measurement "by hand" in the code.

▶ Advantages: easy to implement and debug.
▶ Disadvantages: lots of manual work, "uncertainty principle".

Benchmarking tools: JMH (Java), BenchmarkDotNet (.NET), Google
Benchmark (C), ...

▶ Advantages: a lot less of manual work, nice looking output.
▶ Disadvantages: harder to use and debug, not easy to understand what happen

under the hood.

Personal recommendation: microbenchmarks with tools, macrobenchmarks
from scratch.
Tips for designing benchmarks:

▶ Benchmark the lowest level of abstraction possible: easier to maintain, scope
of benchmark is better defined.

▶ Occasionally benchmark the entire program.
▶ Best programming practices: really know what/how you should measure.

Tips for running benchmarks:
▶ Reduce noise by preparing the environment: very OS dependent.
▶ Repeat benchmarks: recognize/reduce noise.
▶ Beware of branch prediction and other compiler optimizations.

Bottom line: make sure you get stable and relevant results.

Virgile Dubos Code benchmarking December 12, 2024 4 / 18

Before you get started / Conclusion
Measurement "by hand" in the code.

▶ Advantages: easy to implement and debug.
▶ Disadvantages: lots of manual work, "uncertainty principle".

Benchmarking tools: JMH (Java), BenchmarkDotNet (.NET), Google
Benchmark (C), ...

▶ Advantages: a lot less of manual work, nice looking output.
▶ Disadvantages: harder to use and debug, not easy to understand what happen

under the hood.
Personal recommendation: microbenchmarks with tools, macrobenchmarks
from scratch.

Tips for designing benchmarks:
▶ Benchmark the lowest level of abstraction possible: easier to maintain, scope

of benchmark is better defined.
▶ Occasionally benchmark the entire program.
▶ Best programming practices: really know what/how you should measure.

Tips for running benchmarks:
▶ Reduce noise by preparing the environment: very OS dependent.
▶ Repeat benchmarks: recognize/reduce noise.
▶ Beware of branch prediction and other compiler optimizations.

Bottom line: make sure you get stable and relevant results.

Virgile Dubos Code benchmarking December 12, 2024 4 / 18

Before you get started / Conclusion
Measurement "by hand" in the code.

▶ Advantages: easy to implement and debug.
▶ Disadvantages: lots of manual work, "uncertainty principle".

Benchmarking tools: JMH (Java), BenchmarkDotNet (.NET), Google
Benchmark (C), ...

▶ Advantages: a lot less of manual work, nice looking output.
▶ Disadvantages: harder to use and debug, not easy to understand what happen

under the hood.
Personal recommendation: microbenchmarks with tools, macrobenchmarks
from scratch.
Tips for designing benchmarks:

▶ Benchmark the lowest level of abstraction possible: easier to maintain, scope
of benchmark is better defined.

▶ Occasionally benchmark the entire program.
▶ Best programming practices: really know what/how you should measure.

Tips for running benchmarks:
▶ Reduce noise by preparing the environment: very OS dependent.
▶ Repeat benchmarks: recognize/reduce noise.
▶ Beware of branch prediction and other compiler optimizations.

Bottom line: make sure you get stable and relevant results.

Virgile Dubos Code benchmarking December 12, 2024 4 / 18

Before you get started / Conclusion
Measurement "by hand" in the code.

▶ Advantages: easy to implement and debug.
▶ Disadvantages: lots of manual work, "uncertainty principle".

Benchmarking tools: JMH (Java), BenchmarkDotNet (.NET), Google
Benchmark (C), ...

▶ Advantages: a lot less of manual work, nice looking output.
▶ Disadvantages: harder to use and debug, not easy to understand what happen

under the hood.
Personal recommendation: microbenchmarks with tools, macrobenchmarks
from scratch.
Tips for designing benchmarks:

▶ Benchmark the lowest level of abstraction possible: easier to maintain, scope
of benchmark is better defined.

▶ Occasionally benchmark the entire program.
▶ Best programming practices: really know what/how you should measure.

Tips for running benchmarks:
▶ Reduce noise by preparing the environment: very OS dependent.
▶ Repeat benchmarks: recognize/reduce noise.
▶ Beware of branch prediction and other compiler optimizations.

Bottom line: make sure you get stable and relevant results.

Virgile Dubos Code benchmarking December 12, 2024 4 / 18

Before you get started / Conclusion
Measurement "by hand" in the code.

▶ Advantages: easy to implement and debug.
▶ Disadvantages: lots of manual work, "uncertainty principle".

Benchmarking tools: JMH (Java), BenchmarkDotNet (.NET), Google
Benchmark (C), ...

▶ Advantages: a lot less of manual work, nice looking output.
▶ Disadvantages: harder to use and debug, not easy to understand what happen

under the hood.
Personal recommendation: microbenchmarks with tools, macrobenchmarks
from scratch.
Tips for designing benchmarks:

▶ Benchmark the lowest level of abstraction possible: easier to maintain, scope
of benchmark is better defined.

▶ Occasionally benchmark the entire program.
▶ Best programming practices: really know what/how you should measure.

Tips for running benchmarks:
▶ Reduce noise by preparing the environment: very OS dependent.
▶ Repeat benchmarks: recognize/reduce noise.
▶ Beware of branch prediction and other compiler optimizations.

Bottom line: make sure you get stable and relevant results.
Virgile Dubos Code benchmarking December 12, 2024 4 / 18

Focus on reducing noise
Use a high resolution timer.
Disable as many processes or services as possible on the target system.
Reserve CPUs/GPUs, always the same ones if possible.
Disable frequency scaling, turbo boost and address space randomization
(randomize the starting address of the stack).

Bash script on Linux

Prepare machine for benchmarking
sudo cpupower frequency -set --governor performance > /dev/null
sudo bash -c "echo␣1␣>␣/sys/devices/system/cpu/intel_pstate/

no_turbo"
sudo bash -c "echo␣0␣>␣/proc/sys/kernel/randomize_va_space"

Script
./ MyBench #--benchmark_enable_random_interleaving=true

Restore machine settings
sudo cpupower frequency -set --governor powersave > /dev/null
sudo bash -c "echo␣0␣>␣/sys/devices/system/cpu/intel_pstate/

no_turbo"
sudo bash -c "echo␣2␣>␣/proc/sys/kernel/randomize_va_space"

Virgile Dubos Code benchmarking December 12, 2024 5 / 18

Focus on reducing noise
Use a high resolution timer.
Disable as many processes or services as possible on the target system.
Reserve CPUs/GPUs, always the same ones if possible.
Disable frequency scaling, turbo boost and address space randomization
(randomize the starting address of the stack).

Bash script on Linux

Prepare machine for benchmarking
sudo cpupower frequency -set --governor performance > /dev/null
sudo bash -c "echo␣1␣>␣/sys/devices/system/cpu/intel_pstate/

no_turbo"
sudo bash -c "echo␣0␣>␣/proc/sys/kernel/randomize_va_space"

Script
./ MyBench #--benchmark_enable_random_interleaving=true

Restore machine settings
sudo cpupower frequency -set --governor powersave > /dev/null
sudo bash -c "echo␣0␣>␣/sys/devices/system/cpu/intel_pstate/

no_turbo"
sudo bash -c "echo␣2␣>␣/proc/sys/kernel/randomize_va_space"

Virgile Dubos Code benchmarking December 12, 2024 5 / 18

Google Benchmark

A library to benchmark C++ code snippets, similar to unit tests.
Provides performance metrics (CPU time, wall time, and memory usage).
Supports a wide range of benchmarking scenarios, from simple function
benchmarks to complex, parameterized tests.

Basic example.cpp

#include <benchmark/benchmark.h>

static void BM_SomeFunction(benchmark ::State& state) {
// Perform setup here
for (auto _ : state) {

// This code gets timed
SomeFunction ();

}
}
// Register the function as a benchmark
BENCHMARK(BM_SomeFunction);
// Run the benchmark
BENCHMARK_MAIN ();

Virgile Dubos Code benchmarking December 12, 2024 6 / 18

Benchmark with one argument

Basic example_v2.cpp

#include <benchmark/benchmark.h>
static void BM_SomeFunction(benchmark ::State& state) {

for (auto _ : state) {
SomeFunction(state.range (0)); // This code gets timed
state.PauseTiming ();
std::cout <<state.range (0) <<std::endl; // This code doesn ’t
state.ResumeTiming ();

}
}
// Register the function as a benchmark
BENCHMARK(BM_SomeFunction)->Arg (10);
BENCHMARK(BM_SomeFunction)->Arg (10) ->Arg (20);
BENCHMARK(BM_SomeFunction)->RangeMultiplier (2)

->Range (1 << 10, 1 << 20)
->Name("ToTo");

BENCHMARK(BM_SomeFunction)->DenseRange (0, 1024, 128);
BENCHMARK(BM_SomeFunction)->Arg (10) ->Arg (20)

->Threads (16) ->Threads (32);
// Run the benchmark
BENCHMARK_MAIN ();

Virgile Dubos Code benchmarking December 12, 2024 7 / 18

Benchmark with multiple arguments

Basic example_v3.cpp

#include <benchmark/benchmark.h>

static void BM_SomeFunction(benchmark ::State& state) {
// Perform setup here
for (auto _ : state) {

// This code gets timed
SomeFunction(state.range (0), state.range (1));

}
}
// Register the function as a benchmark
BENCHMARK(BM_SomeFunction)->Args({1<<10, 128});
BENCHMARK(BM_SomeFunction)->Args({1<<10, 128}) ->Args({1<<20, 256});
BENCHMARK(BM_SomeFunction)
->RangeMultiplier (2)
->Ranges ({{min_N , max_N}, {min_eps , max_eps }})
BENCHMARK(BM_SomeFunction)->ArgsProduct ({{1<<10, 3<<10}, {60, 80}})
->ArgNames ({"N", "ExpEps"})

// Run the benchmark
BENCHMARK_MAIN ();

Virgile Dubos Code benchmarking December 12, 2024 8 / 18

GBm example output

Console output
Benchmark Time CPU Iter Bytes/s Items/s
--
BM_SetInsert/1024/1 28928 29349 23853 133.097kiB/s 33.274k items/s
BM_SetInsert/1024/8 32065 32913 21375 949.487kiB/s 237.372k items/s
BM_SetInsert/1024/10 33157 33648 21431 1.13369MiB/s 290.225k items/s

Json file

"context": {...},
"benchmarks": [

{
"name": "BM_SetInsert /1024/1",
"iterations": 23853,
"real_time": 28928,
"cpu_time": 29349 ,
"bytes_per_second": 133097 ,
"items_per_second": 33274

}, {...}
]

Virgile Dubos Code benchmarking December 12, 2024 9 / 18

GBm example output

Console output
Benchmark Time CPU Iter Bytes/s Items/s
--
BM_SetInsert/1024/1 28928 29349 23853 133.097kiB/s 33.274k items/s
BM_SetInsert/1024/8 32065 32913 21375 949.487kiB/s 237.372k items/s
BM_SetInsert/1024/10 33157 33648 21431 1.13369MiB/s 290.225k items/s

Json file

"context": {...},
"benchmarks": [

{
"name": "BM_SetInsert /1024/1",
"iterations": 23853,
"real_time": 28928,
"cpu_time": 29349 ,
"bytes_per_second": 133097 ,
"items_per_second": 33274

}, {...}
]

Virgile Dubos Code benchmarking December 12, 2024 9 / 18

Calculating Asymptotic Complexity (Big O)
The following code will calculate the coefficient for the high-order term in the
running time and the normalized root-mean square error of string comparison.

string_compare.cpp

static void BM_StringCompare(benchmark :: State& state) {
std:: string s1(state.range (0), ’-’);
std:: string s2(state.range (0), ’-’);
for (auto _ : state) {

auto comparison_result = s1.compare(s2);
}
state.SetComplexityN(state.range (0));

}
BENCHMARK(BM_StringCompare)

->RangeMultiplier (2) ->Range(1<<10, 1<<18)->Complexity(benchmark
::oN);

BENCHMARK(BM_StringCompare)
->RangeMultiplier (2) ->Range(1<<10, 1<<18)->Complexity ();

Virgile Dubos Code benchmarking December 12, 2024 10 / 18

Fixture tests

fixture_tests.cpp

class MyFixture : public benchmark :: Fixture {
public:

void SetUp (:: benchmark :: State& state) {...}
void TearDown (:: benchmark ::State& state) {...}

};

// Defines and registers ‘FooTest ‘ using the class ‘MyFixture ‘.
BENCHMARK_F(MyFixture , FooTest)(benchmark ::State& st) {

for (auto _ : st) {...}
}

// Only defines ‘BarTest ‘ using the class ‘MyFixture ‘.
BENCHMARK_DEFINE_F(MyFixture , BarTest)(benchmark ::State& st) {

for (auto _ : st) {...}
}

// ‘BarTest ‘ is NOT registered.
BENCHMARK_REGISTER_F(MyFixture , BarTest)->Threads (2);
// ‘BarTest ‘ is now registered.

Virgile Dubos Code benchmarking December 12, 2024 11 / 18

Custom Counters

UserCountersExample.cpp

static void UserCountersExample1(benchmark :: State& state) {
double numFoos = 0, numBars = 0, numBazs = 0;
for (auto _ : state) {

// ... count Foo ,Bar ,Baz events
}
state.counters["Foo"] = numFoos;
state.counters["Bar"] = numBars;
state.counters["Baz"] = numBazs;

}

Console output
Benchmark Time CPU Iter UserCounters
--
BM_SetInsert/1024/1 28928 29349 23853 Bar=16 Bat=40 Baz=24 Foo=8
BM_SetInsert/1024/8 32065 32913 21375 Bar=2 Bat=5 Baz=3 Foo=102
BM_SetInsert/1024/10 33157 33648 21431 Bar=12 Bat=25 Baz=31 Foo=12

Virgile Dubos Code benchmarking December 12, 2024 12 / 18

Preventing Optimization
DoNotOptimize(<expr>) and ClobberMemory() prevent a value or
expression from being optimized away by the compiler.
DoNotOptimize(<expr>) forces the result of <expr> to be stored in either
memory or a register, does not prevent optimizations on <expr>.
ClobberMemory() forces the compiler to perform all pending writes to global
memory.

PreventingOptimization.cpp

static void BM_vector_push_back(benchmark ::State& state) {
for (auto _ : state) {

std::vector <int > v;
v.reserve (1);
auto data = v.data(); // Allow v.data() to be

clobbered. Pass as non -const
benchmark :: DoNotOptimize(data); // lvalue to avoid undesired

compiler optimizations
v.push_back (42);
benchmark :: ClobberMemory (); // Force 42 to be written to memory

}
}

Virgile Dubos Code benchmarking December 12, 2024 13 / 18

Multithreaded Benchmarks
None of the threads will start until all have reached the start of the benchmark
loop, and all will have finished before any thread exits the benchmark loop.

MultithreadedBenchmarks.cpp

static void BM_MultiThreaded(benchmark :: State& state) {
if (state.thread_index () == 0) {

// Setup code here.
}
for (auto _ : state) {

// Run the test as normal.
}
if (state.thread_index () == 0) {

// Teardown code here.
}

}
BENCHMARK(BM_MultiThreaded)->Threads (2);

Virgile Dubos Code benchmarking December 12, 2024 14 / 18

Setup / Teardown
Global setup/teardown specific to each "benchmark".

SetupTeardown.cpp

#include <benchmark/benchmark.h>

static void BM_SomeFunction(benchmark ::State& state) {
...

}

static void DoSetup(const benchmark ::State& state) {
...

}

static void DoTeardown(const benchmark :: State& state) {
...

}

BENCHMARK(BM_SomeFunction)->Arg (1) ->Arg (3) ->Threads (16) ->Threads
(32) ->Setup(DoSetup)->Teardown(DoTeardown);

Virgile Dubos Code benchmarking December 12, 2024 15 / 18

Usefull runtime options and tools

Running a Subset of Benchmarks : --benchmark_filter=<regex>
Random interleaving : --benchmark_enable_random_interleaving=true
Time unit : --benchmark_time_unit=<unit>
Warmup time : --benchmark_min_warmup_time=<value>
Benchmark repetitions : --benchmark_repetitions=<value>
Minimum benchmark runtime : --benchmark_min_time=<value>s
Compare two benchmarks :
compare.py benchmarks <benchmark_baseline>
<benchmark_contender> [benchmark options]...

Compare two different filters of one benchmark :
compare.py filters <benchmark> <filter_baseline>
<filter_contender> [benchmark options]...

Compare filter one from benchmark one to filter two from benchmark two :
compare.py filters <benchmark_baseline> <filter_baseline>
<benchmark_contender> <filter_contender> [benchmark options]...

Virgile Dubos Code benchmarking December 12, 2024 16 / 18

Conclusion
Measurement "by hand" in the code.

▶ Advantages: easy to implement and debug.
▶ Disadvantages: lots of manual work, "uncertainty principle".

Benchmarking tools: JMH (Java), BenchmarkDotNet (.NET), Google
Benchmark (C), ...

▶ Advantages: a lot less of manual work, nice looking output.
▶ Disadvantages: harder to use and debug, not easy to understand what happen

under the hood.
Personal recommendation: microbenchmarks with tools, macrobenchmarks
from scratch.
Tips for designing benchmarks:

▶ Benchmark the lowest level of abstraction possible: easier to maintain, scope
of benchmark is better defined.

▶ Occasionally benchmark the entire program.
▶ Best programming practices: really know what/how you should measure.

Tips for running benchmarks:
▶ Reduce noise by preparing the environment: very OS dependent.
▶ Repeat benchmarks: recognize/reduce noise.
▶ Beware of branch prediction and other compiler optimizations.

Bottom line: make sure you get stable and relevant results.

Virgile Dubos Code benchmarking December 12, 2024 17 / 18

Conclusion
Measurement "by hand" in the code.

▶ Advantages: easy to implement and debug.
▶ Disadvantages: lots of manual work, "uncertainty principle".

Benchmarking tools: JMH (Java), BenchmarkDotNet (.NET), Google
Benchmark (C), ...

▶ Advantages: a lot less of manual work, nice looking output.
▶ Disadvantages: harder to use and debug, not easy to understand what happen

under the hood.

Personal recommendation: microbenchmarks with tools, macrobenchmarks
from scratch.
Tips for designing benchmarks:

▶ Benchmark the lowest level of abstraction possible: easier to maintain, scope
of benchmark is better defined.

▶ Occasionally benchmark the entire program.
▶ Best programming practices: really know what/how you should measure.

Tips for running benchmarks:
▶ Reduce noise by preparing the environment: very OS dependent.
▶ Repeat benchmarks: recognize/reduce noise.
▶ Beware of branch prediction and other compiler optimizations.

Bottom line: make sure you get stable and relevant results.

Virgile Dubos Code benchmarking December 12, 2024 17 / 18

Conclusion
Measurement "by hand" in the code.

▶ Advantages: easy to implement and debug.
▶ Disadvantages: lots of manual work, "uncertainty principle".

Benchmarking tools: JMH (Java), BenchmarkDotNet (.NET), Google
Benchmark (C), ...

▶ Advantages: a lot less of manual work, nice looking output.
▶ Disadvantages: harder to use and debug, not easy to understand what happen

under the hood.
Personal recommendation: microbenchmarks with tools, macrobenchmarks
from scratch.

Tips for designing benchmarks:
▶ Benchmark the lowest level of abstraction possible: easier to maintain, scope

of benchmark is better defined.
▶ Occasionally benchmark the entire program.
▶ Best programming practices: really know what/how you should measure.

Tips for running benchmarks:
▶ Reduce noise by preparing the environment: very OS dependent.
▶ Repeat benchmarks: recognize/reduce noise.
▶ Beware of branch prediction and other compiler optimizations.

Bottom line: make sure you get stable and relevant results.

Virgile Dubos Code benchmarking December 12, 2024 17 / 18

Conclusion
Measurement "by hand" in the code.

▶ Advantages: easy to implement and debug.
▶ Disadvantages: lots of manual work, "uncertainty principle".

Benchmarking tools: JMH (Java), BenchmarkDotNet (.NET), Google
Benchmark (C), ...

▶ Advantages: a lot less of manual work, nice looking output.
▶ Disadvantages: harder to use and debug, not easy to understand what happen

under the hood.
Personal recommendation: microbenchmarks with tools, macrobenchmarks
from scratch.
Tips for designing benchmarks:

▶ Benchmark the lowest level of abstraction possible: easier to maintain, scope
of benchmark is better defined.

▶ Occasionally benchmark the entire program.
▶ Best programming practices: really know what/how you should measure.

Tips for running benchmarks:
▶ Reduce noise by preparing the environment: very OS dependent.
▶ Repeat benchmarks: recognize/reduce noise.
▶ Beware of branch prediction and other compiler optimizations.

Bottom line: make sure you get stable and relevant results.

Virgile Dubos Code benchmarking December 12, 2024 17 / 18

Conclusion
Measurement "by hand" in the code.

▶ Advantages: easy to implement and debug.
▶ Disadvantages: lots of manual work, "uncertainty principle".

Benchmarking tools: JMH (Java), BenchmarkDotNet (.NET), Google
Benchmark (C), ...

▶ Advantages: a lot less of manual work, nice looking output.
▶ Disadvantages: harder to use and debug, not easy to understand what happen

under the hood.
Personal recommendation: microbenchmarks with tools, macrobenchmarks
from scratch.
Tips for designing benchmarks:

▶ Benchmark the lowest level of abstraction possible: easier to maintain, scope
of benchmark is better defined.

▶ Occasionally benchmark the entire program.
▶ Best programming practices: really know what/how you should measure.

Tips for running benchmarks:
▶ Reduce noise by preparing the environment: very OS dependent.
▶ Repeat benchmarks: recognize/reduce noise.
▶ Beware of branch prediction and other compiler optimizations.

Bottom line: make sure you get stable and relevant results.

Virgile Dubos Code benchmarking December 12, 2024 17 / 18

Conclusion
Measurement "by hand" in the code.

▶ Advantages: easy to implement and debug.
▶ Disadvantages: lots of manual work, "uncertainty principle".

Benchmarking tools: JMH (Java), BenchmarkDotNet (.NET), Google
Benchmark (C), ...

▶ Advantages: a lot less of manual work, nice looking output.
▶ Disadvantages: harder to use and debug, not easy to understand what happen

under the hood.
Personal recommendation: microbenchmarks with tools, macrobenchmarks
from scratch.
Tips for designing benchmarks:

▶ Benchmark the lowest level of abstraction possible: easier to maintain, scope
of benchmark is better defined.

▶ Occasionally benchmark the entire program.
▶ Best programming practices: really know what/how you should measure.

Tips for running benchmarks:
▶ Reduce noise by preparing the environment: very OS dependent.
▶ Repeat benchmarks: recognize/reduce noise.
▶ Beware of branch prediction and other compiler optimizations.

Bottom line: make sure you get stable and relevant results.
Virgile Dubos Code benchmarking December 12, 2024 17 / 18

Sources

Google Benchmark official user guide: https:
//github.com/google/benchmark/blob/main/docs/user_guide.md

Benchmarking tips: https://llvm.org/docs/Benchmarking.html
Optimizations for C++ multi-threaded programming:
https://medium.com/distributed-knowledge/
optimizations-for-c-multi-threaded-programs-33284dee5e9c

Google Benchmark basic guide:
https://ccfd.github.io/courses/hpc_lab01.html

How to benchmark C++ code with Google Benchmark:
https://bencher.dev/learn/benchmarking/cpp/google-benchmark/

Virgile Dubos Code benchmarking December 12, 2024 18 / 18

https://github.com/google/benchmark/blob/main/docs/user_guide.md
https://github.com/google/benchmark/blob/main/docs/user_guide.md
https://llvm.org/docs/Benchmarking.html
https://medium.com/distributed-knowledge/optimizations-for-c-multi-threaded-programs-33284dee5e9c
https://medium.com/distributed-knowledge/optimizations-for-c-multi-threaded-programs-33284dee5e9c
https://ccfd.github.io/courses/hpc_lab01.html
https://bencher.dev/learn/benchmarking/cpp/google-benchmark/

	Benchmarking in a nutshell
	Before you get started
	Google Benchmark: basic examples
	Google Benchmark: advance features
	Sources

