
Documentation
experience from scikit-learn

Olivier Grisel - Inria dev meeting - April 2015



Why documentation

• Make it easy for existing users to solve their 
problems using you software 

• Make project discoverable to potential users who 
don’t know about your project yet 

• Make it explicit for contributors to understand the 
scope of the project



Doc as marketing
• Target: potential users who do not know yet about 

your project 

• Doc is full of keywords related to your project 

• Make it easy for people answering questions on 
StackOverflow with a link for details. 

• Organic SEO: best marketing tool



[…]





What documentation
• Narrative documentation 

• Tutorial / Quick-start 

• Detailed explanation of a module / set of features 

• Runnable code examples 

• API reference extracted from in-code docstrings 
(e.g. sphinx-doc.org for Python & C/C++ projects) 

http://sphinx-doc.org




How: make it mandatory 
• Make it a requirement for all code contributions 

• Make it explicit in the documentation of the 
contribution process 

• Never merge a pull-request if it does not include 
the new / updated doc 

• Automated tests to check that the documentation 
inline examples are aligned with the code (e.g. 
doctest in Python)



How to write: 
think as a reader

• 2 main possible user intentions 

• New user want to “get started” without a 
particular use-case in mind: 

• tutorial / getting started section 

• Existing user want to solve a specific problem: 

• narrative documentation / runnable examples



How to write: empathy
• Do not start from the generic theory of everything & let the 

reader use logic / inference to derive specific case of interest. 

• Choose a specific example that is similar to the use case of 
80% of the intended users of that module 

• In-line code example to get the idea 

• Explain typical use case where module is suitable 

• Main parameters that need to be adjusted, tips and tricks 

• Then at the end: mathematical definitions, links to reference 



Stuff to document
• Which components work well together and how 

• How to set important parameters (rules of thumb) 

• Why choose this instead of an alternative module / 
option (pros and cons). 

• Complexity scaling: time (CPU) and space (RAM) 
with typical numbers



Internal linking
• Increase discoverability & reader rerouting: 

• API reference is not a how-to solve a problem 

• Tutorial should not be exhaustive / give details 

• Link to API reference from narrative and source of runnable 
examples 

• “See also” links to similar classes and functions in API doc 

• Link to runnable examples from narrative doc 

• Back-links to narrative from examples



Automate publishing
• Build the documentation for the developer version 

and publish it automatically: 

• For Python: http://readthedoc.org or travis / 
jenkins 

• Make it faster / easier to spot HTML formatting 
issues 

• Less boring work to do at release time.

http://readthedoc.org


Thank you!


