
Inria’s Continuous Integration

portal: feedback

Julien Nauroy

Inria R&D engineer

Laboratoire de Recherche en Informatique

Université Paris Sud

2013-10-16

What is Continuous Integration ?

“merging all developer working copies with a

shared mainline several times a day” Wikipedia

 Comes from eXtreme Programming

 Aims at preventing the « integration hell »

 Reduces rework

Automated unit tests are closely related to C.I.

 Main practice in C.I.

J. Nauroy - Feedback on Continuous Integration

2 / 33

Good practices

1. Have a repository everyone can commit to

 Any SCM: SVN, Git, Hg…

2. Commit often, at least once per day

 Reduces risk & rework

 start the day by updating from repository

 smaller commits make finding bugs easy

3. Create tests ; compile & test before committing

 commits should be working

J. Nauroy - Feedback on Continuous Integration

3 / 33

Continuous Integration tools

Tools can automate Continuous Integration

 E.g. Hudson & Jenkins

Need to make building and testing automatable

 makefile, ant, maven, etc

Need to access the SCM server

J. Nauroy - Feedback on Continuous Integration

4 / 33

Jenkins

Probably the most well-known C.I. tool

 Initial release in Feb. 2011

 Written in Java

On par with Hudson, from which it forked

 Hudson’s first commit on Github : Nov. 2006

 Oracle claims to have a patent on it

Works as an independant server

 Checks out from SCM (SVN, Git…)

 Performs automated actions (build, test, ..)

J. Nauroy - Feedback on Continuous Integration

5 / 33

Stratuslab’s Hudson instance

J. Nauroy - Feedback on Continuous Integration

6 / 33

Inria’s C.I. portal

J. Nauroy - Feedback on Continuous Integration

7 / 33

Overview

Inria’s CI portal offers access to Jenkins

instances to projects lead by Inria users

• https://ci.inria.fr

Basic registration is required (email@inria.fr)

One project => One Jenkins server

J. Nauroy - Feedback on Continuous Integration

8 / 33

How does it work ?

J. Nauroy - Feedback on Continuous Integration

9 / 33

User’s Dashboard

J. Nauroy - Feedback on Continuous Integration 10 / 33

Creation of a project

One project = one Jenkins server

J. Nauroy - Feedback on Continuous Integration

11 / 33

Configuration options

J. Nauroy - Feedback on Continuous Integration 12 / 33

Creation of a slave

J. Nauroy - Feedback on Continuous Integration

13 / 33

Feedback on Continuous Integration

The projet : PHP web framework

~ 7500 lines, 4000 « of code »

Interpreted language

 Syntax errors detected at runtime

MVC architecture

Lots of refactoring to be done

 How to ensure constant quality ?

J. Nauroy - Feedback on Continuous Integration

15 / 33

Steps

1. Write tests

2. Automate them

3. Set up continuous integration

J. Nauroy - Feedback on Continuous Integration

16 / 33

A few words about software testing

What’s software testing ?

 Partial verification of a system

 Comes in various kinds and flavors,

 Unit tests, integration tests, performance, non-regression,

robustness, vulnerability…

Why test my framework ?

 Impact of a bug can be important

 Numerous and anonymous potential users (web)

 Related to software quality assurance (SQA)

J. Nauroy - Feedback on Continuous Integration

17 / 33

Specificities of testing an MVC framework

J. Nauroy - Feedback on Continuous Integration

18 / 33

Let’s create a first unit test

J. Nauroy - Feedback on Continuous Integration

19 / 33

Kind of easy, isn’t it ?

Each « unit » has to be tested
 Classes, methods…

A de facto standard : xUnit (here, PHPUnit)
 Very easy to get a hold on

 Many tutorials available

Use simple assertions
 assertTrue, assertFalse

 assertEquals

 assertCount

 assertContains

J. Nauroy - Feedback on Continuous Integration

20 / 33

Doing it well is a bit hard

Try to think about everything

 Create a new user

 User’s name is valid (policy)

 User’s name is available

 User’s email is valid and available

 No SQL syntax in the name (SQL injection)

 No HTML syntax (XSS)

J. Nauroy - Feedback on Continuous Integration

21 / 33

After some elbow grease…

~1000 lines of code for unit tests

A few days of development

50 functions, 567 assertions

J. Nauroy - Feedback on Continuous Integration

22 / 33

Bonus

Test + debugger traces = Code coverage

J. Nauroy - Feedback on Continuous Integration

23 / 33

Automation

Tests must be automated to be used as C.I.

 Create makefile, use Ant, Maven, …

For this project, use of Phing (Ant for PHP)

Not an easy task !

 Need lots of tools like pear, PHPUnit, Xdebug, …

 Lots of trial and error

Need to create output files to pass to C.I. tool

J. Nauroy - Feedback on Continuous Integration

24 / 33

build.xml for Phing

J. Nauroy - Feedback on Continuous Integration

25 / 33

After some more work…

J. Nauroy - Feedback on Continuous Integration

26 / 33

Integration within Inria’s C.I. portal

1. Create a project and slaves

 slaves are VMs, must be configured (takes time)

2. Create a Job or Project

 Names are confusing, at least in french

3. Configure the Job

 May be painful & time consuming

4. Repeat until happy

 Multiple jobs can be created for different actions

J. Nauroy - Feedback on Continuous Integration

27 / 33

Results

J. Nauroy - Feedback on Continuous Integration

28 / 33

Results (2)

J. Nauroy - Feedback on Continuous Integration

29 / 33

Summary

Summary

C.I. in itself is not very hard to set up

 At least for a small project

Part of any SQA policy

 Unit tests are now a standard way to ensure reliability

 Do you want to build quality software ? You’ll need it !

Has some other advantages

 Nightly snapshots, generation of documentation, …

 Quality metrics, encourages the « boy scout rule »

J. Nauroy - Feedback on Continuous Integration

31 / 33

To go further

Emmanuel Jeanvoine’s upcoming presentation

of Inria’s C.I. portal

 November 8th, 2013

Upcoming Hands-on on test & C.I.

 Date not decided yet

 Probably in english

 Java + Maven + Jenkins

J. Nauroy - Feedback on Continuous Integration

32 / 33

Functionality

 Suitability

 Accuracy

 Interoperability

 Security

Reliability

 Maturity

 Fault Tolerance

 Recoverability

Usability

 Understandability

 Learnability

 Operability

 Attractiveness

Efficiency

 Time Behaviour

 Resource Utilization

Maintainability

 Analyzability

 Changeability

 Stability

 Testability

Portability

 Adaptability

 Installability

 Co-Existence

 Replaceability

Quality Assurance: ISO/CEI 9126

J. Nauroy - Feedback on Continuous Integration 33 / 33

