jeudi 7 avril 2022
« University of Luxembourg share an impressive list of tutorials about HPC. It addresses scheduling (Slurm), GPU programming (CUDA), Containers (Singularity) to only name a few, and talks about research reproducibility.  »
jeudi 10 mars 2022
« CUDA is both a platform and an API that permit to offload computation to Nvidia GPUs. This hands-on like tutorial allow C (and with little effort C++) programmers to make their first step on Nvidia CUDA programming, from printing "Hello, world" to adding two million-entries vectors. Be wary though, as the right CUDA-Toolkit installation may be time consuming, depending on the platform, your Nvidia GPU, its installed driver ... it may be easier if some have access to GPU enabled nodes on clusters.  »
mercredi 24 novembre 2021
« La "suprématie quantique" (i.e. réaliser un calcul qu'il est impossible de faire dans un temps raisonnable sur des infrastructures classiques) que Google prétendait avoir réalisée en 2019 a été battue en brèche: le même calcul a été réalisé sur un cluster GPU en une quinzaine d'heure, avec une marge de progression possible en utilisant un cluster plus large.  »
mercredi 15 avril 2020
« L'application Folding@home a enregistré un regain d'intérêt très fort avec la crise du Covid 19, surtout après un appel à contributions lancé par Nvidia pour mettre à contribution des ressources GPU.  »
jeudi 21 février 2019
« Un exemple très simple pour vectoriser des calculs numpy sur GPU.  »
mercredi 9 janvier 2019
« Depuis son départ d'Anaconda fin 2018 pour rejoindre Nvidia, Matthew Rocklin, lead développeur du projet Dask, a commencé à travailler sur l'utilisation de Dask sur GPU. Dans cet article, il nous présente quelques résultats préliminaires mais très prometteurs: sur un calcul donné en exemple, on passe d'un temps de calcul de 2h39 sur une machine single Core à 19s sur un cluster de 8 GPUs ! Le tout en quelques lignes de Python.  »